Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.05.483025

ABSTRACT

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly druggable or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477757

ABSTRACT

Coronaviruses, as exemplified by SARS-CoV-2, can evolve and spread rapidly to cause severe disease morbidity and mortality. Direct acting antivirals (DAAs) are highly effective in decreasing disease burden especially when they target essential viral enzymes, such as proteases and polymerases, as demonstrated in HIV-1 and HCV and most recently SARS-CoV-2. Optimization of these DAAs through iterative structure-based drug design has been shown to be critical. Particularly, the evolutionarily conserved molecular mechanisms underlying viral replication can be leveraged to develop robust antivirals against rapidly evolving viral targets. The main protease (Mpro) of SARS-CoV-2, which is evolutionarily constrained to recognize and cleave 11 specific sites to promote viral maturation, exemplifies one such target. In this study we define the substrate envelope of Mpro by determining the molecular basis of substrate recognition, through nine high-resolution cocrystal structures of SARS-CoV-2 Mpro with the viral cleavage sites. These structures enable identification of evolutionarily vulnerable sites beyond the substrate envelope that may be susceptible to drug resistance and compromise binding of the newly developed Mpro inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL